
Cross-Layer Modeler – A Tool for Flexible Multilevel
Modeling with Consistency Checking

Andreas Demuth
Institute for Systems

Engineering and Automation
Johannes Kepler University

Linz, Austria
andreas.demuth@jku.at

Roberto E.
Lopez-Herrejon

Institute for Systems
Engineering and Automation
Johannes Kepler University

Linz, Austria
roberto.lopez@jku.at

Alexander Egyed
Institute for Systems

Engineering and Automation
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

ABSTRACT
Model-driven engineering has become a popular methodol-
ogy in software engineering. Most available modeling tools
support the creation of models based on a fixed metamodel.
Typically, tool users cannot change the metamodel to re-
flect domain changes or newly emerged requirements. As a
consequence, an updated version of the tool with an evolved
metamodel must be developed and models as well as con-
straints that ensure model consistency have to be co-evolved,
often manually, to conform to the new metamodel. Both,
tool evolution and the necessary co-evolutions, are time con-
suming and error prone tasks. Furthermore, common tools
often restrict the number of metalevels that can be modeled
and force modelers to use workarounds to express certain
facts. To overcome these issues we present the Cross-Layer
Modeler (XLM), a modeling tool that supports multilevel
modeling and allows co-evolution of metamodels and mod-
els. The XLM automatically performs co-evolution of con-
straints and gives instant feedback about model consistency.
We illustrate the novel modeling approach of our tool and
discuss its main capabilities.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development

General Terms
Design, Experimentation

Keywords
Consistency checking, metamodeling, multilevel modeling

1. INTRODUCTION
Model-driven engineering (MDE) has become a popular

practice to reduce development effort and to improve prod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

uct quality by automatically generating artifacts from mod-
els [8]. Even though most common modeling tools use so-
phisticated metamodels (e.g., theUnified Modeling Language
(UML) [7]) that allow the modeler to describe various as-
pects of systems in different notations, there can still arise
the need for special language constructs that are not pro-
vided by the metamodel. However, modeling tools typically
do not support metamodel modifications because they inter-
nally use a fixed implementation of the metamodel and rely
on an immutable set of classes and their properties.

Metamodeling tools can be used to easily create domain-
specific modeling tools with a metamodel that reflects a sin-
gle domain. Although this simplifies updating the meta-
model, there are several issues that arise with the updated
version of the modeling tool. Namely, old models are likely
to no longer conform to the new metamodel and require co-
evolution.

Changes of metamodels do not only require tools and ex-
isting models to be updated, they can also mean that ex-
isting constraints can become syntactically incorrect or that
they are checking wrong properties because of modified se-
mantics.

In this paper, we present the Cross-Layer Modeler (XLM)
that addresses these issues by allowing the user to modify
metamodels and models at the same time. Our tool provides
consistency checking and automatically updates constraints
to keep them valid after metamodel changes.

In the next section, we illustrate the problems that can
arise with the use of conventional modeling tools. Then, we
show how the use of our tool can avoid these problems in
Section 3. We give a detailed description of how our tool
can be used to model an arbitrary number of metalevels at
the same time, explain how we add constraints and discuss
different aspects of the tool’s architecture.

2. MOTIVATION
As a motivating example, we use a simple feature model

of a car product line inspired by [2].
Fig. 1(a) depicts the metamodel of the used feature model.

There are Feature elements that can be linked by Asso-

ciation elements. Every Association connects a source

feature to at least one target feature. Features can be the
source of an arbitrary number of associations. There are
different kinds of associations: Xor, Or, Mandatory, and Op-

tional. Xor and Or associations are respectively used when
exactly one or at least one of several target sub-features

Figure 1: Screenshot of the Cross-Layer Modeler.

must be selected. The target of Mandatory associations
must be selected and target features of Optional associa-
tions can be selected.

Based on this metamodel, we create the feature model of
our car product line as depicted by the diagram in Fig. 1(b).
A Car needs a Body, a Transmission, an Engine and can
have a TrailerCoupling. The Transmission can be either
Automatic or Manual. The Engine can be Electric or Gaso-
line powered, hybrid models can have both. One of three
different Body types must be used: Convertible, Saloon,
or Coupe. Note that for readability reasons we displayed
only references from Association elements to features and
omitted reference names.

Now that we have created a metamodel and a feature
model for our small product line, we want to model a prod-
uct configuration that consists of concrete realizations of the
defined features. At this point, we face a challenge: model-
ing more than two metalevels (e.g., the metamodel and the
feature model).

When we create an instance of a metamodel element (e.g.,
Feature) to define a feature (e.g., Body), the actual class of
the created objects is the UML type InstanceSpecifica-

tion, which means that we cannot create instances of Body,
for example to describe a concrete feature realization.

The typical workaround is to define a class FeatureRe-

alization and create a reference to the realized Feature.
However, this approach leads to a counterintuitive situa-
tion where features and their realizations are situated at the
same metalevel, namely they are all defined and also instan-
tiated at the M1 (User Model) level directly underneath the
M2 (UML) level (as discussed in [1]). Next, we explain how
we addressed this issue.

3. CROSS-LAYER MODELER
The Cross-Layer Modeler allows multilevel modeling of ar-

bitrary numbers of modeling layers. Every model element,
regardless of its metalevel, can be instantiated to create an
element at the next metalevel underneath. It should be
noted that our tool does not impose any restrictions in terms
of instantiations or connections between model elements at
different levels. In contrast to the UML where different el-
ements have different meanings and properties (e.g., Usage
and Generalization connections), in XLM model elements
and connections do not have a meaning unless it is assigned
by the addition of type information (e.g., Body is an instance
of Feature) or constraints (e.g., every Feature instance can
have an arbitrary number of Association instances assigned
to it).

Most parts of modeling, including instantiations, are per-
formed visually. The user can decide whether the modeling
of various aspects of the system is done in a single or in
multiple diagrams, the latter allows a clear visual separa-
tion of metalevels or other concerns. Instances of selected
model elements as well as all of its attributes are displayed
in a separate view to provide a quick overview even when
the information is not explicitly shown in the diagram. We
will illustrate the modeling by extending our sample product
line by a product configuration next.

3.1 Building models
As it can be seen in Fig. 1(b), we use UML Class ele-

ments instead of InstanceSpecification elements to define
various features such as Body or Engine. Since we want to
keep model and metamodel in different diagrams to achieve
a clear visual separation, we use a separate diagram for in-
stantiations between the two levels. Fig. 1(c) depicts how

we use UML Usage elements (dashed connections) with an
instantiate stereotype to model instantiations of features
(left side) and associations (right side) (most stereotype la-
bels are omitted in the figure for readability reasons).

Now we create a concrete configuration that is assem-
bled from several artifacts that implement different fea-
tures, this configuration is shown in Fig. 1(d). The
PowerSaveHybrid130 has a body (PSBody), a transmission
(PSTransmission) and an engine (PS130Engine) designed
especially for the PowerSave series. The body is a Stan-

dard4Door version, the PSTransmission is based on the
AutomaticComfort transmission and the PS130Engine is
a combination of the Gasoline130hp and the Electric-

Taser500 engines. In this configuration, the car does not
provide a trailer coupling. In the same way we did it in Fig.
1(c), we can use a separate diagram to define that the used
model elements are realizations of features. We use the same
kind of connection to indicate that a model element follows
the concepts defined by another element, like instantiations
of classes or realizations of features, as shown in Fig. 1(e).

For references between model elements we use UML De-

pendency connections. The source element of the connec-
tion owns a reference with the connection’s name to the
target. For example, PS130Engine.Gasoline refers to Gaso-
line130hp.

Note that the modeling we have done so far, except for
the instantiations, does not add any semantics to model ele-
ments and that there are no rules that restrict the addition of
connections between arbitrary elements. Next, we describe
how we add semantics and restrict the freedom of modeling
to only allow correct models.

3.2 Adding constraints
In our tool, there are two ways of adding constraints to

models: i) add a constraint template or ii) add a fixed con-
straint. Constraint templates are automatically instanti-
ated to create constraints that check properties that are not
known in advance. For example, we can define a template
T1 to ensure that for every Or association and its source
Feature we check that realizations of the Feature have ref-
erences to realizations of the association’s target features.
This template generates a specific constraint for every Or

association and its source in the model.
A template consists of the instantiation context, the types

of the elements that are needed for an instantiation (e.g.,
Feature and Or in case of T1). We specify the desired ab-
stract constraint with a rule language statement (e.g., in
OCL [9]), parts of the constraint that are different for every
instantiation of the template are expressed with placehold-
ers. For example, we define the abstract constraint of T1

as:
context FEATURE inv: not self.allReferences->

excludesAll(TARGETS).
Then, we define how concrete values for the placehold-

ers are retrieved. We can use the elements required for
instantiation - called the instantiation information - to re-
trieve the values Feature.name for FEATURE and Or.target-

>collect(name) for TARGETS. The resulting concrete con-
straint is:
context Engine inv: not self.allReferences->

excludesAll({’Gasoline’, ’Electric’}).
Fig. 1(b) shows the instantiation information (Engine and

engineOr) and the elements that are additionally accessed

Figure 2: Architecture of Cross-Layer Modeler.

(Gasoline and Electric) when T1 is instantiated to create
C1. As it can be seen highlighted in Fig. 1(d), our sam-
ple configuration is consistent with C1 because PS130Engine
has a reference named Gasoline to Gasoline130hp and a
reference named Electric to ElectricTaser500.

Fixed constraints are used to check properties that are
equal for all instances of a type, for example a constraint
could check that every FeatureModel does not contain two
different features with the same name.

Our tool provides several wizards for the definition of tem-
plates and fixed constraints, as seen in Fig. 1(f). There are
also various views that inform the user about constraints
defined on selected model elements, all defined constraints,
model inconsistencies and more. Because we perform the
consistency checking incrementally, feedback about model
consistency is provided instantly after every model change.

In addition to the creation of different metalevels at the
same time and consistency checking, another key aspect of
our tool is the flexibility in terms of model evolution.

3.3 Evolving models
The XLM does not only allow the user to perform typical

modifications like adding and removing elements from the
model, but it also supports changes of the types of model
elements at runtime. As an example, lets assume that be-
cause of new laws our Standard4Door feature realization is
now legally treated as a station wagon. We can easily adapt
to this new situation by changing the type from Saloon to
StationWagon without the need of creating a new element or
performing any other changes (note that in standard mod-
eling tools, changing the type of an instance is typically not
possible). However, changing the type means that our sam-
ple configuration in Fig. 1(d) is no longer valid because PS-
Body must refer to Standard4Door via StationWagon now.

Constraints derived from constraint templates are auto-
matically updated if model elements that provided specific
information for the constraint are modified. For example,
changing the name of the element Gasoline to Gas in Fig.
1(b) triggers an update of the constraint C1 because the
modified element is part of the constraint’s scope, the set
of elements that are accessed during template instantiation
(illustrated by the highlighted area in Fig. 1(b)). The up-
dated constraint then requires a reference named Gas instead
of Gasoline.

Now that we have presented the most important features
of the XLM, we will have a look at its architecture in the
next section.

3.4 Tool Architecture
Fig. 2 illustrates the overall architecture of the Cross-

Layer Modeler. Encircled we indicate the connections of

our tool with other existing components, dashed boxes indi-
cate artifacts (e.g., models and template files). We employed
the IBM Rational Software Modeler (RSM) as a front-end
drawing tool. We addressed the issues previously highlighted
in Section 2 by using a graph-oriented model (GraphModel)
that consists of Node and Association elements. Every
model element, independent from the type it models or the
metalevel it resides on, is an instance of Node. Instantiation
of modeled types is emulated by a reference type between
two nodes. This means that we can treat every element at
every metalevel equally without having to deal with differ-
ent classes and their properties. The graph model is kept
up to date by the Model Observer, which is notified about
changes of the drawing tool and performs the required steps
to reflect these changes in the graph model.

The templates that describe the desired behavior of mod-
els are managed by the TemplateEngine component. The
engine handles the creation of Template Rules (i.e., rules
that were created through template instantiation) and is also
responsible for updates of outdated rules. Rules are consid-
ered as outdated by the template engine when parts of their
scopes (i.e., the model elements that were used during in-
stantiation to derive concrete values to replace the variables
in the abstract specification of a template) are changed.

The Model Analyzer [5] component is responsible for vali-
dating rules and checking the model’s consistency. Note that
the component also handles rules that were not derived from
templates but directly added by the user, which is omitted
in Fig. 2. We use a Value Retriever component to extract
values required during rule validation.

The Graph Model informs the Graph Model Observer

about changes. This observer generates change notifications
and notifies both the Template Engine and the Model Ana-

lyzer so that they can start a re-validation of affected rules
or trigger the creation or an update of Template Rules.

3.5 Preliminary Evaluation
We performed several tests with our tool and compared

its consistency checking performance to the reference im-
plementation of the Model Analyzer [5] consistency checker.
The results show that the higher complexity of our imple-
mentation – based on the template mechanism and more
complex type handling – does not impose noticeable per-
formance drawbacks as feedback about model consistency is
provided within milliseconds after a model change occurred.
For the future, we plan to do extensive analysis of this im-
pact with large-scale industrial models.

4. RELATED WORK
Even though there are various approaches that address

the issue of model and metamodel co-evolution (e.g., Epsilon
Flock by Rose et al. [6]), less work has focused on the co-
evolution of (meta)models and constraints.

In terms of flexible modeling, the Generic Modeling Envi-
ronment (GME) is a well known configurable environment
that allows the modeler to specify metamodels and gener-
ate domain-specific modeling environments [3]. They use
a sophisticated, yet fixed, set of concepts to describe these
metamodels, therefore there are still possible restrictions.

Another tool that focuses on flexibility is the Business
Insight Toolkit (BITKit) developed by IBM [4]. It allows
the user to create diagrams and add semantics to graphical
elements afterwards. This approach is also used in our tool

where we can create elements and change their type anytime,
although we do not provide such a visual experience yet.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have shown that the Cross-Layer Mod-

eler supports the modeling of multiple metalevels and gives
the user the freedom to change types of model elements as
well as semantics at any time. The simple notation and the
clear design principles enable even novice users to work with
our tool. Currently our tool is in an early prototype stage,
nevertheless it provides full functionality in terms of mod-
eling multiple metalevels and checking the conformance of
models to their metamodels.

For future releases we plan to enrich the visual experience
during modeling and to add more flexibility and guidance
regarding the definition of constraints, for example dynamic
code-completion during constraint or template authoring.

Even though we focused on a small product line exam-
ple, we believe that our tool is suitable for modeling various
domains where it is necessary to use multiple metalevels or
where aspects of the domain are likely to change.

6. ACKNOWLEDGMENTS
We would like to gratefully acknowledge the Austrian

Science Fund (FWF) through grant P21321-N15 and the
EU Marie Curie Actions – Intra European Fellowship (IEF)
through project number 254965.

7. REFERENCES
[1] Colin Atkinson and Thomas Kühne. The essence of

multilevel metamodeling. In UML, pages 19–33.
Springer, 2001.

[2] Krzysztof Czarnecki and Ulrich W. Eisenecker.
Components and generative programming. In ESEC /
SIGSOFT FSE, pages 2–19. Springer, 1999.

[3] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Péter
Völgyesi, Greg Nordstrom, Jonathan Sprinkle, and
Gabor Karsai. Composing domain-specific design
environments. IEEE Computer, 34(11):44–51, 2001.

[4] Harold Ossher, Rachel K. E. Bellamy, Ian Simmonds,
David Amid, Ateret Anaby-Tavor, Matthew Callery,
Michael Desmond, Jacqueline de Vries, Amit Fisher,
and Sophia Krasikov. Flexible modeling tools for
pre-requirements analysis: conceptual architecture and
research challenges. In OOPSLA, pages 848–864. ACM,
2010.

[5] Alexander Reder and Alexander Egyed.
Model/analyzer: a tool for detecting, visualizing and
fixing design errors in UML. In ASE, pages 347–348.
ACM, 2010.

[6] Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige,
and Fiona A. C. Polack. Model migration with epsilon
flock. In ICMT, pages 184–198. Springer, 2010.

[7] James Rumbaugh, Ivar Jacobson, and Grady Booch.
The Unified Modeling Language Reference Manual (2nd
Edition). Pearson Higher Education, 2004.

[8] Douglas C. Schmidt. Guest editor’s introduction:
Model-driven engineering. IEEE Computer,
39(2):25–31, 2006.

[9] Jos Warmer and Anneke Kleppe. The Object Constraint
Language: Precise Modeling with UML. Addison
Wesley Longman, Inc., 1999.

